Multivariate concentration determination using principal component regression with residual analysis
نویسندگان
چکیده
منابع مشابه
Robust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملOptical Proximity Correction with Principal Component Regression
An important step in today’s Integrated Circuit (IC) manufacturing is optical proximity correction (OPC). In model based OPC, masks are systematically modified to compensate for the non-ideal optical and process effects of optical lithography system. The polygons in the layout are fragmented, and simulations are performed to determine the image intensity pattern on the wafer. Then the mask is p...
متن کاملdemonstrating buried channels using principal component analysis
spectral decomposition of time series has a significant role in seismic data processing and interpretation. since the earth acts as a low-pass filter, it changes frequency content of passing seismic waves. conventional representing methods of signals in time domain and frequency domain cannot show time and frequency information simultaneously. time-frequency transforms upgraded spectral decompo...
متن کاملForecast comparison of principal component regression and principal covariate regression
Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is compared by simulating data from factor models and from regression models. The simulations show that, ...
متن کاملEmpirical research of hybridizing principal component analysis with multivariate discriminant analysis and logistic regression for business failure prediction
Predicting business failure of listed companies is a hot topic because of the emergency of financial crisis in developed countries recently. The two classical statistical methods of multivariate discriminant analysis (MDA) and logistic regression (logit) have taken a key role in the area of business failure prediction (BFP). However, they are frequently criticized for the relative low predictiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TrAC Trends in Analytical Chemistry
سال: 2009
ISSN: 0165-9936
DOI: 10.1016/j.trac.2009.07.002